KEY STAGE 1

Children in Years 1 and 2 will be given a really solid foundation in the basic building blocks of mental and written arithmetic. Through being taught place value, children will develop an understanding of how numbers work, so that they are confident with 2-digit numbers and beginning to read and say numbers above 100

Addition and Subtraction

A focus on number bonds, first via practical hands-on experiences and subsequently using memorisation techniques, enables a good grounding in these crucial facts, and ensures that all children leave Year 2 knowing the pairs of numbers which make all the numbers up to 10 at least. Children will also have experienced and been taught pairs to 20. Children's knowledge of number facts enables them to add several 1-digit numbers, and to add/subtract a 1-digit number to/from a 2-digit number. Another important conceptual tool is the ability to add/subtract 1 or 10, and to understand which digit changes and why. This understanding is extended to enable children to add and subtract multiples of 10 to and from any 2-digit number. The most important application of this knowledge is the ability to add or subtract any pair of 2-digit numbers by counting on or back in 10s and 1s. Children may extend this to adding by partitioning numbers into 10 s and 1 s .

Multiplication and Division:

Children will be taught to count in $2 s, 3 s, 5 s$ and $10 s$, and will relate this skill to repeated addition. Children will meet and begin to learn the associated $\times \mathbf{2}, \times 3, \times 5$ and $\times 10$ tables. Engaging in a practical way with the concept of repeated addition and the use of arrays enables children to develop a preliminary understanding of multiplication, and asking them to consider how many groups of a given number make a total will introduce them to the idea of division. Children will also be taught to double and halve numbers, and will thus experience scaling up or down as a further aspect of multiplication and division.

Fractions:
Fractions will be introduced as numbers and as operators, specifically in relation to halves, quarters and thirds.

Mental calculation

Number bonds ('story' of 5, 6, 7, 8, 9 and 10) Count on in 1s from a given 2-digit number Add two 1-digit numbers
Add three 1-digit numbers, spotting doubles or pairs to 10

Count on in 10 s from any given 2-digit number Add 10 to any given 2-digit number
Use number facts to add 1-digit numbers to 2-digit numbers
e.g. Use $4+3$ to work out $24+3,34+3$

Add by putting the larger number first

Year 1

Default for ALL children

Pairs with a total of 10 Count in 1s Count in 10s Count on 1 from any given 2 digit number

The Coombes Calculation Policy

\begin{tabular}{|c|c|c|c|c|}
\hline Y1
- \& \begin{tabular}{l}
Number bonds ('story' of \(5,6,7,8,9\) and 10) Count back in 1 s from a given 2 -digit number Subtract one 1-digit number from another Count back in 10 s from any given 2-digit number Subtract 10 from any given 2-digit number Use number facts to subtract 1-digit numbers from 2-digit numbers \\
e.g. Use 7-2 to work out 27-2, 37-2
\end{tabular} \& \& \begin{tabular}{l}
\begin{tabular}{l|r}
\(5+0=5\) \& \(3+2=5\) \\
\(0+5=5\) \& \(2+3=5\) \\
\hline \(4+1=5\) \& \\
\(1+4=5\) \& \\
\&
\end{tabular} \\
9
\end{tabular} \& \begin{tabular}{l}
Pairs with a total of 10 \\
Count back in 1s from 20 to 0 \\
Count back in 10 s from 100 to 0 \\
Count back 1 from any given 2-digit number
\end{tabular} \\
\hline \[
\begin{gathered}
\mathrm{Y} 1 \\
\times
\end{gathered}
\] \& \begin{tabular}{l}
Begin to count in \(2 \mathrm{~s}, 5 \mathrm{~s}\) and 10 s \\
Begin to say what three 5 s are by counting in 5 s , or what four \(2 s\) are by counting in 2 s , etc. \\
Double numbers to 10
\end{tabular} \& \begin{tabular}{l}
\(\square\) \(+\) \(\square\) \(=6\) \(\square\) \(+2 p=4 p\) \\
3 lots of \(2=\) \(\square\)
\[
3 \times 2=
\]
\(\square\)

\square
\end{tabular} \& Write the missing numbers. \& Begin to count in 2 s and 10 s Double numbers to 5 using fingers

\hline \[
$$
\begin{aligned}
& \text { Y1 } \\
& \div
\end{aligned}
$$

\] \& | Begin to count in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s |
| :--- |
| Find half of even numbers to 12 and know it is hard to halve odd numbers |
| Find half of even numbers by sharing |
| Begin to use visual and concrete arrays or 'sets of' to find how many sets of a small number make a larger number | \& $\frac{2}{4}$

$$
7+7=
$$

\square \& | $6+6=$ \square |
| :--- |
| Half of $8=4,3, \quad 4 \frac{1}{2}$ \square | \& | Begin to count in 2 s and 10 s |
| :--- |
| Find half of even numbers by sharing |

\hline
\end{tabular}

Year 2

	Mental calculation	Visual or physical representation					Written calculation			Default for ALL children
$\begin{gathered} Y 2 \\ + \end{gathered}$	Number bonds - know all the pairs of numbers which make all the numbers to 12 , and pairs with a total of 20 Count on in 1s and 10s from any given 2-digit number Add two or three 1-digit numbers Add a 1-digit number to any 2-digit number using number facts, including bridging multiples of 10 $\begin{aligned} & \text { e.g. } 45+4 \\ & \text { e.g. } 38+7 \end{aligned}$ Add 10 and small multiples of 10 to any given 2-digit number Add any pair of 2-digit numbers	6	?		$\mathbf{3 4}$ 24 14 4		$\begin{aligned} & 13+ \\ & 7+ \\ & 46+ \end{aligned}$	$\begin{aligned} & =20 \\ & =20 \\ & =50 \end{aligned}$	$\begin{aligned} & 37+1= \\ & 37+10= \\ & 37-10= \\ & 37-1= \end{aligned}$	Know pairs of numbers which make each total up to 10 Add two 1-digit numbers Add a 1-digit number to a 2 digit number by counting on in 1s Add 10 and small multiples of 10 to a 2-digit number by counting on in 10s
Y2	Number bonds - know all the pairs of numbers which make all the numbers to 12 Count back in 1s and 10s from any given 2-digit number Subtract a 1-digit number from any 2-digit number using number facts, including bridging multiples of 10 $\begin{aligned} & \text { e.g. } 56-3 \\ & \text { e.g. } 53-5 \end{aligned}$ Subtract 10 and small multiples of 10 from any given 2-digit number Subtract any pair of 2-digit numbers by counting back in 10s and 1s or by counting up	$\begin{aligned} & 13 \\ & \hline 19 \\ & \hline 14 \\ & \hline 12 \\ & \hline \end{aligned}$		$\begin{aligned} & -7 \\ & \hline 6 \\ & 12 \\ & \hline 7 \\ & \hline 5 \end{aligned}$	$\begin{aligned} & \hline-5 \\ & \hline 8 \\ & \hline 14 \\ & \hline 9 \\ & \hline 7 \end{aligned}$	64	$\begin{gathered} 54 \\ 68-33 \end{gathered}$	-30	$=24$ $8-3=$	Know pairs of numbers which make each total up to 10 Subtract a 1-digit number from a 2-digit number by counting back in 1 s Subtract 10 and small multiples of 10 from a 2-digit number by counting back in 10s

The Coombes Calculation Policy

Count in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s
Begin to count in 3 s
Count in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s
Begin to count in 3 s addition and to use arrays these as 'lots of'

Double numbers up to 20

Begin to double multiples of 5 to 100 1 s digits of $1,2,3,4$ or 5

Begin to understand that multiplication is repeated
e.g. 3×4 is three rows of 4 dots

Begin to learn the $\times 2, \times 3, \times 5$ and $\times 10$ tables, seeing
e.g. 5 lots of 2, 6 lots of 2,7 lots of 2

Begin to double 2-digit numbers less than 50 with

Using fingers, say where a given number is in the $2 \mathrm{~s}, 5 \mathrm{~s}$ or 10 s count
e.g. 8 is the fourth number when I count in $2 s$ Relate division to grouping
e.g. How many groups of 5 in 15?

Halve numbers to 20
Begin to halve numbers to 40 and multiples of 10 to 100
Find $1 / 2,1 / 3,1 / 4$ and $3 / 4$ of a quantity of objects and of amounts (whole number answers)

The Coombes Calculation Policy

LOWER KEY STAGE 2

Abstract

In Lower Key Stage 2, children build on the concrete and conceptual understandings they have gained in Key Stage 1 to develop a real mathematical understanding of the four operations, in particular developing arithmetical competence in relation to larger numbers

\section*{Addition and subtraction:}

Children are taught to use place value and number facts to add and subtract numbers mentally and they will develop a range of strategies to enable them to discard the 'counting in $1 s^{\prime}$ ' or fingers-based methods of Key Stage 1. In particular, children will learn to add and subtract multiples and near multiples of $\mathbf{1 0}, \mathbf{1 0 0}$ and $\mathbf{1 0 0 0}$, and will become fluent in complementary addition as an accurate means of achieving fast and accurate answers to 3 -digit subtractions. Standard written methods for adding larger numbers are taught, learned and consolidated, and written column subtraction is also introduced.

\section*{Multiplication and division:}

This key stage is also the period during which all the multiplication and division facts are thoroughly memorised, including all facts up to 12×12. Efficient written methods for multiplying or dividing a 2-digit or 3-digit number by a 1-digit number are taught, as are mental strategies for multiplication or division with large but 'friendly' numbers, e.g. when dividing by 5 or multiplying by 20.

Fractions and decimals: Children will develop their understanding of fractions, learning to reduce a fraction to its simplest form, as well as finding non-unit fractions of amounts and quantities. The concept of a decimal number is introduced and children consolidate a firm understanding of 1place decimals, multiplying and dividing whole numbers by 10 and 100.

Year 3

Mental calculation

Know pairs with each total to 20

$$
\text { e.g. } 2+6=8,12+6=18,7+8=15
$$

+ Know pairs of multiples of 10 with a total of 100 Add any two 2-digit numbers by counting on in 10s and 1 s or by using partitioning
Add multiples and near multiples of 10 and 100
Perform place-value additions without a struggle

$$
\text { e.g. } 300+8+50=358
$$

Use place value and number facts to add a 1-digit or 2-digit number to a 3-digit number
e.g. $104+56$ is 160 since $104+50=154$ and $6+4=10$
$676+8$ is 684 since $8=4+4$ and

Written calculation

Use expanded column addition to add two or three 3-digit numbers or three 2-digit numbers
Begin to use compact column addition to add numbers with 3 digits Begin to add like fractions

$$
\text { e.g. } 3 / 8+1 / 8+1 / 8
$$

Recognise fractions that add to 1

$$
\begin{aligned}
& \text { e.g. } 1 / 4+3 / 4 \\
& \text { e.g. } 3 / 5+2 / 5
\end{aligned}
$$

Default for ALL children

Know pairs of numbers which make each total up to 10 , and which total 20 Add two 2-digit numbers by counting on in 10 s and 1 s
e.g. $56+35$ is $56+30$ and then add the 5 Understand simple placevalue additions

$$
\text { e.g. } 200+40+5=245
$$

Use place value to add multiples of 10 or 100

The Coombes Calculation Policy

	$76+4+4=84$ Add pairs of 'friendly' 3-digit numbers $\text { e.g. } 320+450$ Begin to add amounts of money using partitioning		$47+35 \quad 40+30=$ \square 7 \square $=$ Total: \square $+$ \square $=$ $\begin{array}{r} 318 \\ +\quad 121 \\ +\quad 243 \\ \hline \end{array}$	
Y3	Know pairs with each total to 20 e.g. $8-2=6$ e.g. $18-6=12$ e.g. $15-8=7$ Subtract any two 2-digit numbers Perform place-value subtractions without a struggle $\text { e.g. } 536-30=506$ Subtract 2-digit numbers from numbers > 100 by counting up e.g. $143-76$ is done by starting at 76 . Then add 4 (80), then add 20 (100), then add 43, making the difference a total of 67 Subtract multiples and near multiples of 10 and 100 Subtract, when appropriate, by counting back or taking away, using place value and number facts Find change from $£ 1, £ 5$ and $£ 10$		Use counting up as an informal written strategy for subtracting pairs of 3-digit numbers e.g. $423-357$ Begin to subtract like fractions e.g. $7 / 8-3 / 8$ \square $=$ \square 8 $\begin{aligned} & 37+1=\square \\ & 37+10=\square \\ & 37-10=\square \\ & 37-1=\square \end{aligned} \begin{array}{rrr} 300 & 120 \\ 400 & 30 & 14 \\ 200 & 80 & 6 \end{array}$	Know pairs of numbers which make each total up to 10, and which total 20 Count up to subtract 2-digit numbers $\text { e.g. } 72-47$ Subtract multiples of 5 from 100 by counting up $\text { e.g. } 100-35$ Subtract multiples of 10 and 100

The Coombes Calculation Policy

${ }^{\circ 0}$ THE Coombes

Use partitioning (grid multiplication) to multiply
2-digit and 3-digit numbers by 'friendly' 1-digit numbers

$9 \times 11 \cdot 6$

6×23		
\times	20	3
6		

Perform divisions just above the 10th multiple using horizontal or vertical jottings and understanding how to give a remainder as a whole number Find unit fractions of quantities and begin to find non-unit fractions of quantities

$$
360 \div 10=
$$

\qquad
 (10)(1)(1)(1)(1)(1)(1)(1)(1) (1) (1) (10) (1) (1) (1) (1) (1) (1) (1) (1) (10)(10)(10 (1) (1) (1) (1) (1)

8 (10) (1) (1) (1) (1) (1) (1) (1) (1) (1) (10) (10) (1) (10) (1) (1) (1) (1) (1) (10)(10)(10)(10) (1) (1) (1) (1) (1) (10)(10)(10)(1) (1) (1) (1) (1) (10)(10)(10)(1) (1) (1) (1)

Year 4

Mental calculation

Y4 Add any two 2-digit numbers by partitioning or counting on

+ Know by heart/quickly derive number bonds to 100 and to $£ 1$
Add to the next 100, $£ 1$ and whole number

$$
\begin{aligned}
& \text { e.g. } 234+66=300 \\
& \text { e.g. } 3 \cdot 4+0 \cdot 6=4
\end{aligned}
$$

Perform place-value additions without a struggle

$$
\text { e.g. } 300+8+50+4000=4358
$$

Add multiples and near multiples of 10, 100 and 1000

Add $£ 1,10 p, 1 p$ to amounts of money
Use place value and number facts to add 1-, 2-, 3 - and 4-digit numbers where a mental calculation is appropriate
e.g. $4004+156$ by knowing that $6+4=10$ and that $4004+150=4154$ so the total is 4160

Subtract any two 2-digit numbers
Know by heart/quickly derive number bonds to 100
Perform place-value subtractions without a struggle
e.g. $4736-706=4030$

Subtract multiples and near multiples of 10,100 , 1000, £1 and 10p

Visual or physical
representation

$$
\text { (10 } \begin{array}{rrr}
100 & 110 & 13 \\
200 & 20 & 3 \\
-100 & 70 & 8
\end{array}
$$

Written calculation

Column addition for 3-digit and 4-digit numbers
e.g.

$$
\begin{array}{r}
5347 \\
2286 \\
+1495 \\
121 \\
\hline 9128 \\
\hline
\end{array}
$$

Add like fractions

$$
\text { e.g. } 3 / 5+4 / 5=7 / 5=12 / 5
$$

Be confident with fractions that add to 1 and fraction complements to 1

$$
\text { e.g. } 2 / 3+{ }_{-}=1
$$

Use expanded column subtraction for
 3 - and

4-digit numbers
Use complementary addition to subtract amounts of money, and for subtractions where the larger number is a near multiple of 1000 or 100

Default for ALL children

Add any 2-digit numbers by partitioning or counting on Number bonds to 20 Know pairs of multiples of 10 with a total of 100 Add 'friendly' larger numbers using knowledge of place value and number facts Use expanded column addition to add 3-digit numbers

Use counting up with confidence to solve most subtractions, including finding complements to multiples of 100

$$
\text { e.g. } 512-287
$$

$$
\text { e.g. } 67+_{-}=100
$$

The Coombes Calculation Policy

Subtract multiples of $0 \cdot 1$

Subtract by counting up

$$
\begin{aligned}
& \text { e.g. } 503-368 \text { is done by adding } \\
& 368+2+30+100+3 \text { (so we added 135) }
\end{aligned}
$$

Subtract, when appropriate, by counting back or taking away, using place value and number facts Subtract $£ 1,10$ p, 1 p from amounts of money Find change from $£ 10, £ 20$ and $£ 50$

Know by heart all the multiplication facts up to

 $12 \times 12$$\times \quad$ Recognise factors up to 12 of 2-digit numbers Multiply whole numbers and 1-place decimals by 10, 100, 1000
Multiply multiples of 10,100 and 1000 by 1 -digit numbers

$$
\begin{aligned}
& \text { e.g. } 300 \times 6 \\
& \text { e.g. } 4000 \times 8
\end{aligned}
$$

Use understanding of place value and number facts in mental multiplication

$$
\begin{aligned}
& \text { e.g. } 36 \times 5 \text { is half of } 36 \times 10 \\
& \text { e.g. } 50 \times 60=3000
\end{aligned}
$$

Partition 2-digit numbers to multiply by a 1-digit number mentally

$$
\text { e.g. } 4 \times 24 \text { as } 4 \times 20 \text { and } 4 \times 4
$$

Multiply near multiples by rounding

$$
\text { e.g. } 33 \times 19 \text { as }(33 \times 20)-33
$$

Find doubles to double 100 and beyond using partitioning
Begin to double amounts of money
e.g. $£ 35.60$ doubled is $£ 71 \cdot 20$

0.1020.0304050607
) $\begin{array}{lllllll}0.1 & 0.20 .304 & 0.50 .50 .708 & 0.9\end{array}$

-1	12	13	14	15	16	16	17	18	19

13×46

\times	40	6
10		
3		

Subtract like fractions

$$
\text { e.g. } 4 / 5-3 / 5=1 / 5
$$

Use fractions that add to 1 to find fraction complements to 1
e.g. $1-2 / 3=1 / 3$

१969 9959 9949 $9939 \quad \ldots \quad \ldots$

Use a vertical written method to multiply a 1 -digit number by a 3 -digit number (ladder method)
Use an efficient written method to multiply a
2-digit number by a number between 10 and 20 by partitioning (grid method)

Know by heart multiplication tables up to
10×10
Multiply whole numbers by 10 and 100
Use the grid method to multiply a 2 -digit or a 3-digit number by a number ≤ 6

The Coombes Calculation Policy

Y4 Know by heart all the division facts up to $144 \div 12$
\div Divide whole numbers by 10,100 , to give whole number answers or answers with 1 decima place
Divide multiples of 100 by 1 -digit numbers using division facts

$$
\text { e.g. } 3200 \div 8=400
$$

Use place value and number facts in mental division
e.g. $245 \div 20$ is half of $245 \div 10$

Divide larger numbers mentally by subtracting the 10th or 20th multiple as appropriate

$$
\text { e.g. } 156 \div 6 \text { is } 20+6 \text { as } 20 \times 6=120 \text { and }
$$

$$
6 \times 6=36
$$

Find halves of even numbers to 200 and beyond using partitioning
Begin to halve amounts of money
e.g. half of $£ 52.40$ is $£ 26 \cdot 20$

$$
\begin{aligned}
& 87 \div 5 \\
& \begin{array}{l}
\square \times 5=87 \\
10 \times 5=50 \\
\hline 37 \\
7 \times 5=35 \\
\hline 10+2, r 7
\end{array}
\end{aligned}
$$

$$
87 \div 5=12 \text { r } 7
$$

$$
\begin{aligned}
& 10+5 \mathrm{r} 4=15 \mathrm{r} 4 \\
& 6 \\
&-89 \\
&- 60 \\
&-29 \\
&-24 \\
& \hline
\end{aligned}
$$

Use a written method to divide a 2 digit or a
3-digit number by a 1-digit number Give remainders as whole numbers Begin to reduce fractions to their simplest forms

Find unit and non-unit fractions of larger amounts

Know by heart all the division facts up to $100 \div 10$
Divide whole numbers by 10 and 100 to give whole number answers or answers with

1 decimal place

Perform divisions just above the 10th multiple using the written layout and understanding how to give a remainder as a whole number

Find unit fractions of amounts

The Coombes Calculation Policy

UPPER KEY STAGE 2

Children move on from dealing mainly with whole numbers to performing arithmetic operations with both decimals and fractions.

Addition and subtraction:

Children will consolidate their use of written procedures in adding and subtracting whole numbers with up to 6 digits and also decimal numbers with up to 2 decimal places. Mental strategies for adding and subtracting increasingly large numbers will also be taught. These will draw upon children's robust understanding of place value and knowledge of number facts. Negative numbers will be added and subtracted.

Multiplication and division:

Efficient and flexible strategies for mental multiplication and division are taught and practised, so that children can perform appropriate calculations even when the numbers are large, such as 40000×6 or $40000 \div 8$. In addition, it is in Years 5 and 6 that children extend their knowledge and confidence in using written algorithms for multiplication and division.

Fractions, decimals, percentages and ratio:
Fractions and decimals are also added, subtracted, divided and multiplied, within the bounds of children's understanding of these more complicated numbers. Children will also calculate simple percentages and ratios.

Year 5

Visual or physical
 representation

$\square \cdot \square \mathrm{m}+\square \cdot \square \mathrm{m}=0.5 \mathrm{~m}$

Written calculation

Use column addition to add two or three whole numbers with up to 5 digits
Use column addition to add any pair of 2-place decimal numbers, including amounts of money
Begin to add related fractions using equivalences

$$
\text { e.g. } 1 / 2+1 / 6=3 / 6+1 / 6
$$

Choose the most efficient method in any given situation

Default for ALL children

Add numbers with only 2 digits which are not zeros

$$
\text { e.g. } 3 \cdot 4+5 \cdot 8
$$

Derive swiftly and without any difficulty number bonds to 100 Add 'friendly' large numbers using knowledge of place value and number facts
Use expanded column addition
to add pairs of
4 - and 5-digit numbers
or 10 , including money

$$
\begin{aligned}
& \text { e.g. } 6 \cdot 34+1 \cdot 99 \\
& \text { e.g. } £ 34 \cdot 59+£ 19 \cdot 95
\end{aligned}
$$

Use place value and number facts to add two or more 'friendly' numbers, including money and decimals

$$
\begin{aligned}
& \text { e.g. } 3+8+6+4+7 \\
& \text { e.g. } 0 \cdot 6+0 \cdot 7+0.4 \\
& \text { e.g. } 2056+44
\end{aligned}
$$

Subtract numbers with 2 significant digits only, using mental strategies

$$
\begin{aligned}
& \text { e.g. } 6 \cdot 2-4.5 \\
& \text { e.g. } 72000-47000
\end{aligned}
$$

Subtract 1- or 2-digit multiples of 10, 100, 1000, 10000 and 100000

$$
\text { e.g. } 8000-3000
$$

$$
\text { e.g. } 60000-200000
$$

Subtract 1- or 2-digit near multiples of 10, 100, 1000, 10000 and 100000 from other numbers

$$
\text { e.g. } 82472-30004
$$

Subtract decimal numbers which are near multiples of 1 or 10 , including money
e.g. 6.34-1.99
e.g. £34.59-£19.95

Use counting up subtraction, with knowledge of number bonds to 10,100 or $£ 1$, as a strategy to perform mental subtraction
e.g. $£ 10-£ 3.45$
e.g. 1000-782

Recognise fraction complements to 1 and to the next whole number
e.g. $12 / 5+3 / 5=2$

$£ 53 \cdot \square 7$ $+£ 25 \cdot 42$
 +£79-19

$$
7 \underset{\neq 15}{12}
$$

$$
8 Z 5
$$

$$
\frac{-547}{288}
$$

Use compact or expanded column subtraction to subtract numbers with up to 5 digits Use complementary addition for subtractions where the larger number is a multiple or near multiple of 1000
Use complementary addition for subtractions of decimal numbers with up to 2 places, including amounts of money Begin to subtract related fractions using equivalences

$$
\text { e.g. } 1 / 2-1 / 6=2 / 6
$$

Choose the most efficient method in any given situation.

$$
\begin{aligned}
& 3004-1979=\square \\
& 8012-6895=\square
\end{aligned}
$$

Derive swiftly and without difficulty number bonds to 100 Use counting up with confidence to solve most subtractions, including finding complements to multiples of 1000
e.g. $3000-2387$

Y5 Know by heart all the multiplication facts up to 12×12
x Multiply whole numbers and 1- and 2-place decimals by $10,100,1000,10000$
Use knowledge of factors and multiples in multiplication

$$
\begin{aligned}
& \text { e.g. } 43 \times 6 \text { is double } 43 \times 3 \\
& \text { e.g. } 28 \times 50 \text { is } 1 / 2 \text { of } 28 \times 100=1400
\end{aligned}
$$

Use knowledge of place value and rounding in mental multiplication

$$
\text { e.g. } 67 \times 199 \text { as } 67 \times 200-67
$$

Use doubling and halving as a strategy in mental multiplication

$$
\begin{aligned}
& \text { e.g. } 58 \times 5 \text { is half of } 58 \times 10 \\
& \text { e.g. } 34 \times 4 \text { is } 34 \text { doubled twice }
\end{aligned}
$$

Partition 2-digit numbers, including decimals, to multiply by a 1 -digit number mentally
e.g. 6×27 as 6×20 (120) plus 6×7 (42)
e.g. $6 \cdot 3 \times 7$ as $6 \times 7(42)$ plus $0.3 \times 7(2 \cdot 1)$

Double amounts of money by partitioning
e.g. $£ 37.45$ doubled is $£ 37$ doubled ($£ 74$) plus

45 p doubled (90p) giving a total of $£ 74.90$
Know by heart all the division facts up to $144 \div 12$
\div Divide whole numbers by $10,100,1000,10000$ to give whole number answers or answers with 1, 2 or 3 decimal places
Use doubling and halving as mental division strategies

$$
\text { e.g. } 34 \div 5 \text { is }(34 \div 10) \times 2
$$

Use knowledge of multiples and factors, as well as tests for divisibility, in mental division
e.g. $246 \div 6$ is $123 \div 3$

So $24 \times 34 \cdot 2=$

$$
\frac{3}{5} \times 2=1 \frac{1}{5}
$$

Use short multiplication to multiply a 1 -digit number by a number with up to 4 digits Use long multiplication to multiply 3-digit and 4-digit numbers by a number between 11 and 20
Choose the most efficient method in any given situation Find simple percentages of amounts
e.g. $10 \%, 5 \%, 20 \%$, 15% and 50%
Begin to multiply fractions and mixed numbers by whole numbers ≤ 10

$$
\text { e.g. } 4 \times 2 / 3=8 / 3=2^{2 / 3}
$$

Use short division to divide a number with up to
4 digits by a number ≤ 12 Give remainders as whole numbers or as fractions
Find non-unit fractions of large amounts
Turn improper fractions into mixed numbers and vice versa
Choose the most efficient

Know multiplication tables to 11 $\times 11$

Multiply whole numbers and 1 place decimals by 10,100 and 1000
Use knowledge of factors as aids to mental multiplication
e.g. 13×6 is double 13×3
e.g. 23×5 is $1 / 2$ of 23×10

Use the grid method to multiply numbers with up to 4 digits by 1 digit numbers
Use the grid method to multiply 2-digit numbers by 2-digit numbers

Know by heart division facts up to $121 \div 11$
Divide whole numbers by 10 , 100 or 1000 to give answers with up to 1 decimal place Use doubling and halving as mental division strategies
Use an efficient written method to divide numbers ≤ 1000 by 1 digit numbers

```
e.g. We know that 525 divides by }25\mathrm{ and
```

by 3

Halve amounts of money by partitioning e.g. $1 / 2$ of $£ 75 \cdot 40=1 / 2$ of $£ 75$ ($£ 37 \cdot 50$) plus half of 40 (20 p) which is $£ 37.70$
Divide larger numbers mentally by subtracting the
10th or 100th multiple as appropriate e.g. $96 \div 6$ is $10+6$, as $10 \times 6=60$ and $6 \times 6=36$
e.g. $312 \div 3$ is $100+4$ as $100 \times 3=300$ and $4 \times 3=12$
Know tests for divisibility by 2, 3, 4, 5, 6, 9 and 25
Know square numbers and cube numbers
Reduce fractions to their simplest form
$\frac{4}{10}<\frac{5}{10}$ SO $\frac{2}{5}<\frac{5}{10}$
$474 \div 4=118$ r2 or $118 \frac{\square}{\square}$

23 9r2
$4 \longdiv { 9 ^ { 1 } 5 ^ { 3 } 8 }$

Find unit fractions of 2- and 3digit numbers

Year 6

Mental calculation

Know by heart number bonds to 100 and use these to derive related facts

$$
\text { e.g. } 3.46+0.54
$$

Derive, quickly and without difficulty, number bonds to 1000
Add small and large whole numbers where the use of place value or number facts makes the calculation do-able mentally

$$
\text { e.g. } 34000+8000
$$

Add multiples of powers of 10 and near multiples of the same

$$
\text { e.g. } 6345+199
$$

Add negative numbers in a context such as temperature where the numbers make sense Add two 1-place decimal numbers or two

Written calculation

Use column addition to add numbers with up to 5 digits Use column addition to add decimal numbers with up to 3 decimal places
Add mixed numbers and fractions with different denominators

Default for ALL children

Derive, swiftly and without difficulty, number bonds to 100 Use place value and number facts to add 'friendly' large or decimal numbers
e.g. $3 \cdot 4+6 \cdot 6$
e.g. $26000+54000$

Use column addition to add numbers with up to 4-digits
Use column addition to add pairs of 2-place decimal numbers

Subtract multiples of powers of 10 and near multiples of the same
Subtract negative numbers in a context such as temperature where the numbers make sense
Know by heart all the multiplication facts up to 12×12
$x \quad$ Multiply whole numbers and decimals with up to 3 places by 10, 100 or 1000

$$
\text { e.g. } 234 \times 1000=234000
$$

$$
\text { e.g. } 0.23 \times 1000=230
$$

Identify common factors, common multiples and prime numbers and use factors in mental

\square

$$
6 \frac{1}{2}-c=5
$$

Use column subtraction to subtract numbers with up to 6 digits
Use complementary addition for subtractions where the larger number is a multiple or near multiple of 1000 or 10000
Use complementary addition for subtractions of decimal numbers with up to 3 places, including money
Subtract mixed numbers and fractions with different denominators

Use short multiplication to multiply a 1-digit number by a number with up to 4 digits Use long multiplication to multiply a 2 -digit number by a number with up to 4 digits Use short multiplication to multiply a 1 -digit number by a

Use number bonds to 100 to perform mental subtraction of numbers up to 1000 by complementary addition

$$
\text { e.g. } 1000-654 \text { as } 46+
$$

300 in our heads
Use complementary addition for subtraction of integers up to 10 000

$$
\text { e.g. } 2504-1878
$$

Use complementary addition for subtractions of 1-place decimal numbers and amounts of money
e.g. $£ 7 \cdot 30-£ 3.55$

Know by heart all the multiplication facts up to 12×12
Multiply whole numbers and 1 and 2-place decimals by 10, 100 and 1000
Use an efficient written method to multiply a

multiplication

e.g. 326×6 is 652×3 which is 1956

Use place value and number facts in mental multiplication

$$
\begin{aligned}
& \text { e.g. } 4000 \times 6=24000 \\
& \text { e.g. } 0.03 \times 6=0.18
\end{aligned}
$$

Use doubling and halving as mental multiplication strategies, including to multiply by $2,4,8,5,20,50$ and 25
e.g. 28×25 is a quarter of $28 \times 100=700$

Use rounding in mental multiplication

$$
\text { e.g. } 34 \times 19 \text { as }(34 \times 20)-34
$$

Multiply 1 - and 2 -place decimals by numbers up to and including 10 using place value and partitioning
e.g. 3.6×4 is $12+2.4$
e.g. 2.53×3 is $6+1.5+0.09$

Double decimal numbers with up to 2 places using partitioning
e.g. 36.73 doubled is double 36 (72) plus double 0.73 (1.46)

Y6 Know by heart all the division facts up to $144 \div 12$
\div Divide whole numbers by powers of 10 to give whole number answers or answers with up to
3 decimal places
Identify common factors, common multiples and primes numbers and use factors in mental division

$$
\text { e.g. } 438 \div 6 \text { is } 219 \div 3 \text { which is } 73
$$

Use tests for divisibility to aid mental calculation
Use doubling and halving as mental division strategies, for example to divide by $2,4,8,5,20$ and 25
e.g. $628 \div 8$ is halved three times:

$$
451600 \div 10
$$

$$
451600 \div 100
$$

number with 1 or 2 decimal places, including amounts of money
Multiply fractions and mixed numbers by whole numbers Multiply fractions by proper fractions
Use percentages for comparison and calculate simple percentages

Use short division to divide a number with up to
4 digits by a 1-digit or a 2digit number
Use long division to divide 3digit and 4-digit numbers by 'friendly' 2-digit numbers Give remainders as whole numbers or as fractions or as decimals
Divide a 1-place or a 2-place decimal number by a number ≤ 12 using multiples of the

1-digit or a teen number by a number with up to 4 digits by partitioning (grid method)
Multiply a 1-place decimal number up to 10 by a number \leq 100 using the grid method

Know by heart all the division facts up to $144 \div 12$
Divide whole numbers by 10 , 100, 1000 to give whole number answers or answers with up to 2 decimal places
Use an efficient written method, involving subtracting powers of 10 times the divisor, to divide any number of up to 1000 by a number ≤ 12
e.g. $836 \div 11$ as $836-770$

314, 157, $78 \cdot 5$
Divide 1- and 2-place decimals by numbers up to and including 10 using place value
e.g. $2.4 \div 6=0.4$
e.g. $0.65 \div 5=0.13$
e.g. $£ 6.33 \div 3=£ 2.11$

Halve decimal numbers with up to 2 places using partitioning
e.g. Half of 36.86 is half of 36 (18) plus half of $0.86(0.43)$
Know and use equivalence between simple fractions, decimals and percentages, including in different contexts
Recognise a given ratio and reduce a given ratio to its lowest terms

divisors

Divide proper fractions by whole numbers
(70×11) leaving 66 which
is 6×11, giving the answer 76
Divide a 1-place decimal by a number ≤ 10 using place value and knowledge of division facts

